C21	0.5826 (15)	0.2291 (3)	0.3948 (5)	0.098 (6)
C22	0.7849 (14)	0.2608 (3)	0.4079 (6)	0.097 (6)
C23	0.9193 (13)	0.2591 (4)	0.4922 (7)	0.106 (6)
C24	0.8519 (12)	0.2258 (3)	0.5645 (5)	0.084 (5)

finement, the population parameters for C15, C16, H151, H152, H161 and H162 were set at 0.65 and the population parameters for C15A, C16A, H153, H154, H163 and H164 were set at 0.35.

Table 2. Geometric parameters (Å, °)

S-017	1.442 (5)	C8-C13	1.509 (8)
S-018	1.422 (5)	C8-C14	1.541 (8)
S-C14	1.795 (6)	C10-C11	1.501 (11)
SC19	1.766 (7)	C11-C12	1.519 (11)
01–C2	1.418 (9)	C12-C13	1.518 (9)
O1-C6	1.407 (7)	C14-C15	1.534 (12)
07—C6	1.442 (7)	C14C15A	1.587 (17)
O7—C8	1.425 (7)	C15-C16	1.530 (13)
O9C8	1.406 (6)	C15A—C16A	1.507 (24)
O9-C10	1.424 (8)	C19—C20	1.354 (10)
C2-C3	1.487 (11)	C19-C24	1.368 (9)
C3-C4	1.527 (13)	C20-C21	1.385 (10)
C4C5	1.480 (17)	C21-C22	1.361 (12)
C5-C6	1.480 (10)	C22-C23	1.357 (13)
C6-C16	1.623 (11)	C23–C24	1.376 (11)
C6-C16A	1.416 (21)		
017—S—018	118.9 (4)	O9-C8-C13	112.9 (5)
O17-S-C14	110.7 (3)	O9-C8-C14	105.6 (4)
O17-S-C19	106.8 (3)	C13-C8-C14	110.4 (5)
O18-S-C14	109.5 (3)	O9-C10-C11	111.7 (5)
O18-S-C19	107.6 (3)	C10-C11-C12	110.3 (5)
C14-S-C19	101.9 (3)	C11-C12-C13	109.6 (6)
C2-01-C6	115.8 (5)	C8-C13-C12	111.9 (5)
C6-07-C8	119.9 (4)	S-C14-C8	114.2 (4)
C8-09-C10	115.1 (4)	S-C14-C15	112.8 (5)
O1-C2-C3	112.3 (7)	S-C14-C15A	101.8 (6)
C2-C3-C4	106.5 (6)	C8-C14-C15	117.4 (6)
C3-C4-C5	110.6 (7)	C8-C14-C15A	104.4 (7)
C4-C5C6	113.8 (8)	C14-C15-C16	105.8 (7)
O1-C6-O7	110.2 (5)	C14-C15A-C16A	109.3 (12)
O1-C6-C5	109.8 (5)	C6-C16-C15	107.4 (7)
O1-C6-C16	97.4 (5)	C6-C16A-C15A	109.6 (14)
O1-C6-C16A	127.2 (9)	S-C19-C20	121.3 (5)
O7-C6-C5	106.3 (6)	SC19C24	118.6 (5)
O7-C6-C16	110.6 (5)	C20-C19-C24	120.0 (6)
07-C6-C16A	109.7 (9)	C19-C20-C21	119.8 (7)
C5-C6-C16	122.2 (7)	C20-C21-C22	120.2 (7)
C5-C6-C16A	90.5 (9)	C21-C22-C23	119.6 (7)
07	112.4 (4)	C22-C23-C24	120.5 (7)
O7-C8-C13	105.5 (4)	C19C24C23	119.7 (7)
07-C8-C14	110.2 (5)		

The θ -scan width was $(0.80 + 0.33 \tan \theta)^{\circ}$. Background measurements were extended by 25% of the peak scan on either side of each peak. The maximum time for measurement of one reflection was 60 s. Data collection and cell refinement: Enraf-Nonius (1984) CAD-4 PDP11 Software. Data reduction: NRC-VAX DATRD2 (Gabe, Le Page, Charland, Lee & White, 1989). Program used to solve structure: MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). Software used to prepare material for publication: NRCVAX TABLES; OR-TEPII (Johnson, 1976). Program used to refine structure: NRC-VAX LSTSQ. Block-diagonal least-squares refinement was performed, with H atoms included in their calculated positions, but not refined. Isotropic U values were assigned to the H atoms as equal to U_{eq} of the attached atom plus 0.010 Å². C15 and C16 of the central ring, along with their attached H atoms, were found to be disordered, with site occupancy factors of 0.65 and 0.35 for the major and minor conformers, respectively. Relative amounts of the two forms were determined by refining the population parameters of C15, C16, C15A and C16A, while holding the temperature factors constant. C15, C16, C15A and C16A were given isotropic thermal parameters during refinement; all other non-H atoms were given anisotropic thermal parameters. In the final reLists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry and least-squares-planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71275 (18 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: LI1033]

References

- Brimble, M. A., Rush, C. J., Williams, G. M. & Baker, E. N. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 414-416.
- Enraf-Nonius (1984). CAD-4 PDP11 Software. Enraf-Nonius, Delft, The Netherlands.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kinashi, H., Otake, N., Yonehara, H., Sato, S. & Saito, Y. (1973). Tetrahedron Lett. pp. 4955-4958.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Occolowitz, J. L., Berg, D. H., Debono, M. & Hamill, R. L. (1976). Biomed. Mass Spectrosc. 3, 272-277.

Acta Cryst. (1993). C49, 1859-1862

Structures of Two Hexacyclic Cage Diketone Monoacetals

JAMES M. COXON, SIEW TAI FONG AND PETER J. STEEL

Department of Chemistry, University of Canterbury, Christchurch, New Zealand

Simon G. Bott, Alan P. Marchand and Umesh R. Zope

Department of Chemistry, University of North Texas, PO Box 5068, Denton, TX 76203, USA

(Received 21 October 1992; accepted 14 April 1993)

Abstract

The structures of 10,10-(ethylenedioxy)hexacyclo-[$10.2.1.0^{2.11}.0^{4.9}.0^{4,14}.0^{9,13}$]pentadeca-5,7-dien-3-one and 10,10-diisopropoxyhexacyclo[$10.2.1.0^{2.11}.0^{4.9}.-0^{4.14}.0^{9,13}$]pentadeca-5,7-dien-3-one are reported. In each structure the cyclohexadiene ring is planar. Bonding geometries are similar to those found in other cage structures, except for elongations of the C4—C9 propellane-type bonds due to the fusion of the diene rings. A slight flattening of the boat conformations of the unbridged six-membered rings is observed in the acetals relative to the parent dione.

Comment

As part of a program that involves the synthesis and chemistry of novel substituted cage compounds (Marchand, 1989, 1991), we undertook to synthesize a series of unsymmetrically substituted hexacyclo-[10.2.1.0^{2,11}.0^{4,9}.0^{4,14}.0^{9,13}]pentadeca-5,7-dienes in order to determine the effects of remote substituents on the π -facial selectivities of Diels-Alder reactions (Coxon, O'Connell & Steel, 1987; Coxon, Maclagan, McDonald & Steel, 1991). The readily available 3,10dione (1) (Kushner, 1971; Pandey, Zope & Avyangar, 1990) is a useful starting material for this purpose. In order to defeat the twofold symmetry inherent in (1), we prepared monoacetals of (1) by reactions with alcohols. Thus, reaction with ethanediol cleanly affords the monoethyleneacetal (2) while reaction with isopropanol produces a mixture of the unsymmetrical monoacetal (3) along with a small amount of the transannularly cyclized bisacetal (4), as shown in the scheme below. In order to confirm the structures and to examine the steric environments of the diene moieties in these compounds, X-ray structure determinations were carried out.

The structures of (2) and (3) are confirmed by the X-ray analyses as shown in Figs. 1 and 2. Each compound consists of the pentacycloundecane cage system (Marchand, 1989) in which the open side of the cage is functionalized by ketone and acetal groups and the diene ring is fused across the adjacent cyclobutane ring junction. In both structures the cyclohexadiene ring is planar to within 0.02 Å. As has been noted for previously reported cage structures (Flippen-Anderson, Gilardi, George, Marchand & Reddy, 1989, and references therein), C—C bonds involving C3, C10 or C15 are significantly shortened and the C2—C11 bonds are lengthened

relative to the other (normal) bond lengths. The only exception to the usual pattern is the slight lengthening of the C4—C9 propellane-type bonds due to the presence of the diene ring. This lengthening is also observed in the structures of the parent dione (1) (Dhaneshwar, Tavale, Guru Row, Zope, Pandey & Ayyangar, 1988) and three of its Diels–Alder adducts (Coxon, O'Connell & Steel, 1986).

The greater steric demand of the acetal groups results in a slight lengthening of the C3—C10 nonbonded distance in (2) [2.683 (6) Å] and in (3) [2.696 (8) Å] relative to the corresponding distance in the parent dione (1) [2.563 (5) Å]. This corresponds to a flattening of the boat conformation of the six-membered ring and is also observed in the structures of other cage diketone monoacetals (Flippen-Anderson, Gilardi, George, Marchand & Reddy, 1989; Watson, Nagl, Marchand, Reddy & Reddy, 1989).

Fig. 1. Perspective view and atom labelling of (2). Thermal ellipsoids are shown at 50% probability levels; H atoms as circles of arbitrary radii.

Fig. 2. Perspective view and atom labelling of (3). Thermal ellipsoids are shown at 50% probability levels; H atoms as circles of arbitrary radii.

Experimental

Compound (2)

Crystal data C₁₇H₁₆O₃ $M_r = 268.3$ Orthorhombic Pbcn a = 21.972 (2) Å b = 9.2992 (6) Å c = 12.486 (1) Å V = 2551.2 (7) Å³ Z = 8 $D_x = 1.397$ Mg m⁻³ Mo K α radiation $\lambda = 0.71073$ Å

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: empirical (Walker & Stuart, 1983) $T_{min} = 0.88, T_{max} = 1.22$ 1857 measured reflections 1857 independent reflections

Refinement

Refinement on F Final R = 0.044 wR = 0.045 S = 1.07 959 reflections 181 parameters H-atom parameters not refined w = $[\sigma^2(F_{\rho}) + 0.04(F_{\rho})^2]^{-1}$

Compound (3)

Crystal data

C₂₁H₂₆O₃ $M_r = 326.4$ Triclinic $P\overline{1}$ a = 8.726 (6) Å b = 10.013 (5) Å c = 10.322 (7) Å $\alpha = 96.26$ (5)° $\beta = 109.63$ (5)° $\gamma = 91.24$ (5)° V = 842.8 (9) Å³ Z = 2 $D_r = 1.286$ Mg m⁻³

Data collection

Nicolet R3m diffractometer	$R_{\rm int} = 0.030$
ω scans	$\theta_{\rm max} = 25^{\circ}$
Absorption correction:	$h = -10 \rightarrow 9$
none	$k = -11 \rightarrow 11$
3147 measured reflections	$l = 0 \rightarrow 12$

Cell parameters from 25 reflections $\theta = 18-20^{\circ}$ $\mu = 0.089 \text{ mm}^{-1}$ T = 294 KBlock $0.5 \times 0.3 \times 0.2 \text{ mm}$ Colourless Crystal source: recrystallized from ethyl acetate-hexane

959 observed reflections $[l \ge 3\sigma(l)]$ $\theta_{max} = 22^{\circ}$ $h = 0 \rightarrow 23$ $k = 0 \rightarrow 9$ $l = 0 \rightarrow 12$ 3 standard reflections frequency: 60 min intensity variation: $\le 1.4\%$

$(\Delta/\sigma)_{\rm max} = 0.005$	
$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$	
Extinction correction: none	
Atomic scattering factors	
from International Tables	5
for X-ray Crystallograph	y
(1974, Vol. IV)	

Mo $K\alpha$ radiation

Cell parameters from 15

 $0.36 \times$ 0.16 \times 0.06 mm

Crystal source: recrystallized from ether-petroleum

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\mu = 0.079 \text{ mm}^{-1}$

 $\theta = 7.5 - 15^{\circ}$

T = 175 K

Colourless

ether

Block

2968 independent reflections	3 standard reflections
1098 observed reflections	monitored every 100
$[I > 3\sigma(I)]$	reflections
	intensity variation: <2.5%

Refinement

010

016 017

C١

C2

C3

C4 C5 C6

C7 C8

C9

C10

C11

C12 C13

C14

C15

C16

C17

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.002$
Final $R = 0.051$	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.052 S = 1.18	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$
1098 reflections	Extinction correction: none
217 parameters	Atomic scattering factors
H-atom parameters not re-	from International Tables
fined	for X-ray Crystallography
$w = [\sigma^2(F_o) + 0.0005(F_o)^2]^{-1}$	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for (2)

$B_{\rm eq} = (4/3) \sum_i \sum_j B_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$				
x	у	z	B_{eq}	
0.1970 (2)	0.2126 (4)	0.1283 (3)	3.9 (1)	
0.1611(1)	0.1228 (4)	-0.1123 (2)	3.3 (1)	
0.1179 (2)	0.2472 (4)	-0.2502 (3)	3.6(1)	
0.1425 (2)	0.5163 (6)	-0.1450 (3)	3.4 (1)	
0.1822 (2)	0.3815 (5)	-0.1281 (4)	2.8 (1)	
0.1371 (2)	0.2579 (5)	-0.1410(3)	2.6(1)	
0.0843 (2)	0.3060 (5)	-0.0702 (3)	2.4 (1)	
0.0257 (2)	0.2298 (6)	-0.0860 (4)	3.1 (1)	
-0.0065 (2)	0.1766 (5)	-0.0061 (4)	3.3 (1)	
0.0142 (2)	0.1861 (6)	0.1042 (4)	3.3 (1)	
0.0655 (2)	0.2509 (5)	0.1308 (4)	2.9 (1)	
0.1054 (2)	0.3197 (5)	0.0500 (3)	2.3 (1)	
0.1736 (2)	0.2900 (5)	0.0627 (4)	2.6 (1)	
0.2042 (2)	0.3977 (5)	-0.0089 (4)	2.9 (1)	
0.1730 (2)	0.5382 (5)	0.0260 (4)	3.3 (1)	
0.1053 (2)	0.4875 (5)	0.0365 (4)	2.8 (1)	
0.0848 (2)	0.4718 (5)	-0.0811 (4)	3.0(1)	
0.1713 (2)	0.6307 (6)	-0.0745 (5)	4.1 (1)	
0.1615 (3)	0.0372 (7)	-0.2012 (5)	7.4 (2)	
0.1386 (3)	0.1154 (7)	-0.2903 (5)	5.7 (2)	

Table 2. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) for (3)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	у	z	U_{eq}
O10	0.5649 (4)	0.5805 (4)	0.8437 (4)	0.03i (2)
O16	0.4796 (4)	0.8838 (3)	0.7936 (4)	0.022 (2)
017	0.2289 (4)	0.9830 (3)	0.7172 (4)	0.023 (2)
Cl	0.0922 (6)	0.7832 (6)	0.8328 (6)	0.021 (2)
C2	0.2770 (6)	0.8198 (5)	0.8855 (6)	0.025 (2)
C3	0.3079 (6)	0.8660 (5)	0.7605 (6)	0.021 (2)
C4	0.2194 (7)	0.7502 (5)	0.6461 (6)	0.024 (2)
C5	0.1800 (6)	0.7726 (6)	0.4988 (7)	0.027 (3)
C6	0.2002 (6)	0.6834 (6)	0.4007 (6)	0.026 (3)
C7	0.2747 (6)	0.5571 (5)	0.4363 (7)	0.024 (2)
C8	0.3228 (6)	0.5238 (5)	0.5629 (6)	0.023 (3)
C9	0.2940 (6)	0.6105 (5)	0.6789 (6)	0.017 (2)
C10	0.4305 (7)	0.6255 (5)	0.8176 (6)	0.023 (2)
C11	0.3537 (7)	0.6819 (5)	0.9230 (6)	0.026 (2)
C12	0.2005 (6)	0.5829 (5)	0.8831 (6)	0.026 (3)
C13	0.1456 (7)	0.5706 (5)	0.7221 (6)	0.024 (2)
C14	0.0706 (6)	0.7065 (5)	0.6885 (6)	0.025 (3)
C15	0.0735 (7)	0.6707 (6)	0.9168 (7)	0.030 (3)
C16	0.5407 (7)	0.9197 (5)	0.6871 (6)	0.025 (2)
C17	0.2787 (7)	1.1061 (5)	0.8133 (6)	0.021 (2)
C18	0.6668 (7)	1.0380 (5)	0.7510 (6)	0.032 (3)
C19	0.6170 (7)	0.8018 (6)	0.6348 (7)	0.034 (3)
C20	0.1574 (7)	1.1389 (6)	0.8847 (7)	0.037 (3)
C21	0.2907 (7)	1.2161 (6)	0.7262 (6)	0.033 (3)

Table 3. Bond distances (Å) and angles (°)

	(*)	(*)		(-)	(.
	(2)	(3)		(2)	(3)
O10-C10	1.205 (6)	1.220 (7)	C6C7	1.452 (7)	1.460 (8)
O16C3	1.409 (6)	1.422 (6)	C7C8	1.321 (7)	1.315 (9)
O16-C16	1.366 (7)	1.447 (8)	C8C9	1.481 (6)	1.495 (9)
O17—C3	1.431 (5)	1.411 (7)	C9-C10	1.532 (6)	1.513 (7)
O17—C17	1.401 (7)	1.453 (6)	C9-C13	1.569 (6)	1.562 (9)
C1—C2	1.542 (7)	1.539 (7)	C10-C11	1.502 (6)	1.525 (10)
C1—C14	1.555 (7)	1.549 (9)	C11-C12	1.539 (7)	1.556 (8)
C1-C15	1.520 (7)	1.533 (9)	C12C13	1.565 (6)	1.556 (9)
C2-C3	1.526 (7)	1.521 (10)	C12-C15	1.521 (7)	1.535 (9)
C2-C11	1.572 (6)	1.577 (8)	C13—C14	1.543 (6)	1.546 (8)
C3—C4	1.526 (6)	1.544 (7)	C16-C17	1.421 (9)	
C4—C5	1.483 (6)	1.485 (9)	C16-C18		1.528 (7)
C4—C9	1.576 (6)	1.579 (8)	C16-C19		1.506 (9)
C4-C14	1.547 (7)	1.571 (9)	C17-C20		1.502 (10)
C5C6	1.320 (7)	1.336 (9)	C17-C21		1.519 (9)
C3O16C16	108.4 (4)	118.2 (4)	C8-C9-C10	115.5 (4)	116.5 (5)
C3O17C17	107.8 (4)	117.1 (4)	C8C9C13	120.1 (4)	118.2 (4)
C2-C1-C14	100.1 (4)	100.2 (5)	C10-C9-C13	101.1 (3)	101.0 (5)
C2-C1-C15	104.7 (4)	104.0 (4)	O10-C10-C9	126.6 (4)	127.2 (6)
C14—C1—C15	103.2 (4)	103.1 (4)	O10-C10-C11	127.7 (4)	126.2 (5)
C1-C2-C3	103.3 (4)	103.8 (4)	C9-C10-C11	104.8 (4)	105.4 (5)
C1-C2-C11	103.0 (4)	103.4 (4)	C2-C11-C10	111.2 (4)	110.7 (5)
C3-C2-C11	111.8 (4)	112.5 (5)	C2-C11-C12	102.3 (4)	102.6 (4)
O16-C3-017	106.9 (3)	111.8 (4)	C10-C11-C12	101.4 (4)	100.4 (4)
O16-C3-C2	113.7 (4)	107.7 (4)	C11-C12-C13	101.1 (4)	100.4 (5)
O16-C3-C4	113.5 (4)	116.4 (5)	C11-C12-C15	104.9 (4)	103.3 (4)
O17—C3—C2	110.1 (4)	113.7 (5)	C13-C12-C15	102.6 (4)	103.3 (4)
O17—C3—C4	110.3 (4)	105.7 (4)	C9-C13-C12	107.9 (4)	109.1 (4)
C2C3C4	102.3 (4)	101.3 (5)	C9-C13-C14	90.5 (3)	91.1 (5)
C3-C4-C5	116.3 (4)	118.7 (5)	C12-C13-C14	103.1 (4)	103.3 (5)
C3C4C9	110.6 (3)	112.2 (4)	C1-C14-C4	108.4 (4)	108.0 (4)
C3-C4-C14	103.7 (4)	103.1 (5)	C1-C14-C13	103.0 (4)	103.7 (5)
C5-C4-C9	114.9 (4)	113.5 (5)	C4-C14-C13	90.8 (3)	90.1 (4)
C5C4-C14	118.1 (4)	115.6 (4)	C1-C15-C12	95.3 (4)	95.6 (5)
C9-C4-C14	90.0 (3)	89.6 (4)	O16-C16-C17	109.6 (5)	
C4—C5—C6	123.0 (4)	124.4 (5)	O16-C16-C18		107.7 (5)
C5-C6-C7	121.7 (4)	120.3 (6)	O16-C16-C19		110.2 (5)
C6-C7-C8	122.2 (4)	123.0 (6)	C18-C16-C19		110.5 (5)
C7—C8—C9	122.1 (4)	121.4 (5)	O17-C17-C16	106.4 (5)	. /
C4—C9—C8	116.1 (4)	117.1 (5)	O17-C17-C20	. ,	111.8 (4)
C4-C9-C10	111.8 (3)	110.8 (4)	O17-C17-C21		105.6 (5)
C4-C9-C13	88.7 (3)	89.2 (4)	C20-C17-C21		110.2 (5)
		N N			

For (2): structure solution by direct methods (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980); refinement by full-matrix least squares (Enraf-Nonius, 1990). For (3): structure solution by direct methods and full-matrix leastsquares refinement with *SHELXTL-Plus* (Sheldrick, 1991). H atoms were located from difference maps but included in calculated positions. No attempt was made to model the disorder of C16 in (2) suggested by its bonding and thermal parameters.

APM thanks the Robert A. Welch Foundation (grant B-963) and the Office of Naval Research (contract N00014-92-J-1362) for financial support of this study.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71265 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1054]

References

- Coxon, J. M., Maclagan, R. G. A. R., McDonald, D. Q. & Steel, P. J. (1991). J. Org. Chem. 56, 2542–2549.
- Coxon, J. M., O'Connell, M. J. & Steel, P. J. (1986). Acta Cryst. C42, 1773–1777.
- Coxon, J. M., O'Connell, M. J. & Steel, P. J. (1987). J. Org. Chem. 52, 4726–4732.

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved

- Dhaneshwar, N. N., Tavale, S. S., Guru Row, T. N., Zope, U. R., Pandey, B. & Ayyangar, N. R. (1988). Acta Cryst. C44, 2191– 2193.
- Enraf-Nonius (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Flippen-Anderson, J. L., Gilardi, R., George, C., Marchand, A. P. & Reddy, G. M. (1989). Acta Cryst. C45, 661-663.
- Kushner, A. S. (1971). Tetrahedron Lett. pp. 3275-3278.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Marchand, A. P. (1989). Advances in Theoretically Interesting Molecules, Vol. 1, edited by R. P. Thummel, pp. 357–399. Greenwich, CT: JAI Press.
- Marchand, A. P. (1991). Synlett, pp. 73-79.
- Pandey, B., Zope, U. R. & Ayyangar, N. R. (1990). J. Chem. Soc. Chem. Commun. pp. 107-110.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Watson, W. H., Nagl, A., Marchand, A. P., Reddy, G. M. & Reddy, S. P. (1989). Acta Cryst. C45, 659-661.

Acta Cryst. (1993). C49, 1862-1865

8-Pentacyclo[6.3.0.0^{2,6}.0^{3,10}.0^{5,9}]undec-3'-ylexo-pentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecane

WILLIAM H. WATSON AND RAM P. KASHYAP

Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA

ALAN P. MARCHAND AND MAHENDRA N. DESHPANDE

Department of Chemistry, University of North Texas, Denton, TX 76203, USA

(Received 25 February 1993; accepted 19 April 1993)

Abstract

The title compound is composed of two $C_{11}H_{14}$ geometric isomers, pentacyclo[5.4.0.0^{2,6}.0^{3,10}.0^{5,9}]undecane (PCU) and pentacyclo[6.3.0.0^{2,6}.0^{3,10}.0^{5,9}]undecane (trishomocubane), connected by a single bond. The PCU isomer contains four five-membered rings, a four-membered ring and a six-membered ring fused into a cage-like structure, while the trishomocubane isomer is a fusion of six five-membered rings. Elongated bond lengths in these molecules are compared with literature structures and with the results of molecular-mechanics calculations.